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Abstract

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, 

have been linked to Alzheimer disease (AD) risk by independent lines of evidence. We explored 

this association by comparing the frequencies of viral species identified in a large sample of AD 

cases and controls.
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METHODS: DNA sequence reads that did not align to the human genome in sequences were 

mapped to viral reference sequences, quantified, and then were tested for association with AD in 

whole exome sequences (WES) and whole genome sequences (WGS) datasets.

RESULTS: Several viruses were significant predictors of AD according to the machine learning 

classifiers. Subsequent regression analyses showed that HSV-1 (OR=3.71, P=8.03×10−4) and 

HPV-71(OR=3.56, P=0.02), were significantly associated with AD after Bonferroni correction. 

The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several 

strata of the data (P<0.01).

DISCUSSION: Our results support the hypothesis that viral infection, especially HSV-1, is 

associated with AD risk.
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1. BACKGROUND

Development of efficacious therapies for Alzheimer’s disease (AD) is a critically important 

international research priority. Despite numerous advances in our understanding of the 

fundamental pathological mechanisms leading to AD, substantial knowledge gaps exist. 

Neuronal response to stress from multiple sources has been linked to AD pathology 

[1], and abnormal microglial response and associated inflammation due to viral infection 

may be one such stressor [1]. Multiple lines of evidence suggest infectious agents might 

impact this stress and inflammation cascade. Several studies reported an association of 

microbial DNA/RNA detected in brain samples with AD risk [2],[3]. Production of amyloid 

beta (Aβ) increases in response to infection and may protect against infectious agents 

including herpes simplex type 1 (HSV-1) [4], H1N1 influenza A virus (IAV) [5], and various 

bacterial agents [6]. HSV-1 infections also induce accumulation of Aβ42 inside neurons by 

a calcium-dependent mechanism [7]. Herpes infections have also been shown to increase 

levels of intracellular phosphorylated microtubule associated protein tau protein (P-tau) [8],

[9]. In addition, HSV-1 DNA has been found within senile plaques in AD brains [10]. 

The association between HSV-1 and AD is strongest in carriers of the apolipoprotein E 

(APOE) ε4 allele [11]. Finally, treatment with antiviral agents has been shown to reduce AD 

pathology in mice [12] and was associated with significantly higher cognitive function in 

humans in non-AD clinical trials [13],[14]. Acyclovir, which targets viral DNA replication, 

was shown to significantly reduce the levels of Aβ and P-tau in HSV-1 infected cells in 

culture, as well as HSV-1 levels [15]. A clinical trial of another antiviral agent, Valacyclovir, 

for AD treatment is ongoing [16].

In this study, we tested the hypothesis that viral species and/or the aggregate viral load 

are associated with AD risk. We identified and categorized human viral DNA present in 

whole exome sequence (WES) or whole genome sequence (WGS) data obtained by 37,000 

participants of the Alzheimer Disease Sequencing Project (ADSP) and applied machine 

learning methods to detect viral species that predicted AD status. Viruses were further tested 
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for association with AD risk in ancestry population subsets and the total sample using 

logistic regression models.

2. METHODS

2.1. Subject Ascertainment and Characteristics

Whole genome sequencing (WGS) and whole exome sequencing (WES) data were 

derived from blood and brain samples donated by participants of the Alzheimer’s Disease 

Sequencing Project (ADSP) which was established by the National Institute on Aging and 

National Human Genome Research Institute to identify genetic risk factors for late-onset 

AD [17]. The ADSP ascertained subjects in multiple waves. In the Discovery phase, 

one group of approximately 11,000 unrelated AD cases and controls including 9,590 

individuals of European ancestry (EA) and 386 Caribbean Hispanics (CH) were selected 

for exome sequencing based on sex, age, and APOE genotype. Controls were deemed to 

have a low likelihood of conversion to AD by age 90 based on cognitive assessment or 

neuropathological exam, and AD cases who were likely enriched for genetic factors other 

than APOE genotype were preferentially selected [18],[19]. The WGS sample contained 583 

related individuals from 111 EA and CH families. These families were selected based on 

the presence of more than three AD affected individuals and families without APOE ε4 

alleles and other known AD risk variants were preferentially chosen. [19]. WGS was also 

performed for a portion of the ADSP extension sample that included additional members 

of the 111 families and approximately 3,000 unrelated AD cases and controls (nearly 

equal numbers of EAs, CHs and African Americans (AAs) [19]. Approximately 8,000 

additional unrelated AD cases and controls including 2,690 EA, 3,984 AA, and 1,673 

CH subjects in the extension sample underwent WES. WGS data were obtained from an 

independent group enriched for AAs included in the ADSP follow-up study containing 

9,107 unrelated AD cases and controls. Cases either met NINCDS-ADRDA clinical criteria 

for AD, or postmortem findings met moderate or high likelihood of neuropathological 

criteria of AD. Autopsy data was available for 28.7% of the cases and controls used in the 

analysis. Controls were free of dementia by direct cognitive assessment or neuropathological 

examination.

2.2. DNA Sequencing and Microbial DNA Detection

WES and WGS methods and quality control (QC) procedures are described in detail 

elsewhere [17],[18],[19]. The sample included 15,125 WES and 13,396 WGS data derived 

from either brain (N=3,449) or blood (N= 25,072). We developed a pipeline called 

MicrobeSeq to detect viral DNA in the human DNA sequence data and classify it using 

the complete reference genomes (FASTA files) from 318 viral species. We started with 511 

viral reference genomes available through NCBI with humans listed as the host species[20]. 

We removed 20 species that were duplicates, 47 that were primarily zoonotic viruses that 

rarely affected humans, and one that was acutely fatal. Additionally, we removed seven 

viruses with no documented cases in the US, 92 with no NCBI number, an indicator that 

the existence of the virus as a separate species had not been confirmed, and 26 for reasons 

including sparse information on the virus or whether it was a DNA virus. First, we removed 

all sequencing reads that mapped to the human genome sequence (build GRCh38) and 
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generated a new FASTQ file. The resulting FASTQ file, which was enriched for non-human 

DNA reads, was then aligned to a set of microbe reference sequences encompassing all 

reference genomes using BWA-MEM [21]. Viral read matches were counted and normalized 

by the depth of the original host alignment data. Although reads were initially mapped to 61 

viral species in more than one sample but after QC filtering 59 unique species remained.

2.3. Statistical Analysis

Three types of analysis were conducted to identify viral species associated with AD. 

First, supervised machine learning (ML) algorithms, including random forest, decision 

tree, LASSO, k-nearest neighbors, adaboost, support vector machines and the generalized 

boosted model (GBM), were applied to total and species-specific viral read counts. An 

ensemble method was used to aggregate the predictive accuracies from the ML algorithms. 

Ensemble methods are known to make better predictions and achieve better performance 

than any single contributing model [22]. Additionally, ensemble methods are more robust 

and reduce the spread or dispersion of the predictions and model performance [22]. In 

addition to viral read counts, variables representing potential confounders and technical 

artifacts (i.e. sequence center, PCR amplification, demographic factors) were also included 

in these models (Figure S1). Significant non-viral AD predictors were included as covariates 

in subsequent logistic regression models. These classifiers were fitted on a training set 

(80% of the data) using the scikit-learn module in Python [23] and then tested on the 

remaining 20% of the data. The permutation importance algorithm, implemented in the 

Scikit-Learn module in Python 3 utilizing 10-fold cross-validation in each model was 

used to determine which viruses were the most important predictors of AD. A feature 

was considered “important” if randomly permuting its values increased the model error, 

because the model relied on the feature for the prediction [24]. For each permutation of the 

response vector, the relevance for all predictor variables was assessed yielding a vector of 

s importance measures for each variable. Feature importance was defined as the difference 

in accuracy between the baseline model which included all the predictors and a permuted 

model where one predictor at a time was replaced with random values [24]. Larger positive 

values indicate that the baseline model yielded higher accuracy than the model with random 

values for that feature.

We developed a weighting algorithm to summarize the best features across all classifier 

models to integrate the information generated by all ML methods. The ML weighting 

algorithm was applied to four subsets stratified by sequencing method (WES/WGS) 

and tissue source. The weighting algorithm calculated the number of times a feature’s 

permutation importance score was above zero and that count was further weighted by the 

accuracy of that model. Ties were broken based on how those features performed in the 

highest performing model. If tied features did not appear in the highest performing model, 

the features were iteratively compared in the next best performing model until a difference 

was found. Features that were identified across many models and ranked most highly in the 

best performing models were considered the most predictive of AD. ML models were not 

corrected for multiple testing because they did not produce standard p-values.
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GLM models were implemented in R to obtain effect sizes and p-values for the association 

of AD risk with prevalence and quantity of viruses and also with binary indicators of the 

presence of any vs. no DNA. Models for analysis of WES data were adjusted for sequencing 

center, APOE genotype, and ancestry. WGS data analysis models were adjusted for these 

covariates as well as an indicator variable for the use of PCR amplification. Regression 

models were evaluated within the same four strata as the ML analysis, and the results 

for each virus were combined across strata via inverse variance weighted meta-analysis. 

Multiple testing thresholds were determined based on the number of species detected in 

every stratum of the data contributing to that meta-analysis, e.g., ten viruses were detected 

in WES, WGS, blood, and brain so the adjusted significance threshold for that meta-analysis 

was p<0.005. A secondary analysis was conducted within ancestry groups, further stratified 

by WES/WGS and body tissue source. A one-way ANCOVA was used to test the association 

between the prevalence and/or quantity of several viruses and ancestry with the following 

covariates: sequencing center, APOE genotype, and tissue source. The multiple testing 

thresholds were determined similar to the primary analysis, e.g., 59 viruses were detected 

in every AA stratum so the significance threshold was p<0.001. Only HSV-1 was detected 

in more than 5% of samples and only HPV-71, HCV, and MC were detected in more than 

1% of total samples. Therefore, we performed feature selection on only those samples with 

at least one virus detected to address problems with sparsity in the data. As a sensitivity 

analysis, we repeated the regression-based analyses using only the samples with any virus 

detected (Table S1).

To test whether viral clusters were associated with AD and to address the potential for 

misassignment of reads or identical reads across closely related species, we performed 

the unsupervised learning algorithm K-means to create phylogenetic clusters within the 

59 human viruses detected based on Gower’s distance using the Scikit-Learn module in 

Python 3. We varied the number of clusters from 2 to 20 and found k=5 to be the optimal 

number based on an elbow plot of within-cluster sums of squares and silhouette scores. Five 

composite variables were created from these clusters such that the viral load of each virus 

within each cluster was summed for each individual. AD status was then regressed on each 

of these five cluster quantities, and also binary indicators of the presence of any vs. no DNA 

from species within that family, with adjustment for the aforementioned covariates using 

GLM.

3. RESULTS

3.1 Viral DNA Detected in both Brain and Blood

Less than 0.0001% of the DNA reads did not map to the human genome but rather to 59 

distinct viral species deemed likely to appear in elderly human DNA samples. Of these, 19 

were detected in brain-derived samples and all 59 were detected in blood-derived samples. 

Additionally, ten and six viruses were unique to WGS and WES data, respectively. Ten viral 

species were detected in all four-tissue source and sequencing experiment type strata of 

the data: HSV-1, Epstein–Barr virus (EBV), HHV-6A, HHV-6B, Human betaherpesvirus 7 

(HHV-7), Human papillomavirus 71 (HPV-71), Hepatitis C (HCV), Molluscum contagiosum 

(MC), Torque teno midi virus 9 (TTMV-9), and Tick-borne encephalitis. Viral reads were 
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detected in 49% of brain derived and 59% of blood derived sequences. The average 

cumulative viral read counts in the four strata were 12.56 in blood/WGS, 5.38 in blood/

WES, 6.75 in brain/WGS, and 4.52 in brain/WES (see Table S2 for further breakdown by 

cases and controls). Figure 1 shows the proportion of total reads mapping to a viral species 

that map to each individual species and taxonomic family within each of the four strata 

of the data described above. Herpesviridae, Flaviviridae, Anelloviridae, Papillomaviridae, 

and Poxviridae were five most common virus families detected in both the WES and WGS 

sequence data. Herpesviridae was the most detected human viral family, comprised almost 

entirely of HSV-1.

3.2 AD Associations in WES Blood

Figure 2 shows AD-predictive viral features, as well as AD predictive demographic and 

technical factors. The length of the bars corresponds to the number of ML methods in 

which the feature was significant. HSV-1, human alphaherpesvirus 2 (HSV-2), HHV-6B, 

HHV-6A, EBV, human betaherpesvirus 5 (CMV), HPV-71, Torque teno virus 3 (TTV-3), 

Torque teno virus 7 (TTV-7), Torque teno virus 10 (TTV-10), torque teno midi virus 5 

(TTMV-5), TTMV-9, MC, and cumulative mapped viral reads had permutation feature 

importance scores above zero in this stratum (Figure 2c). The best model was LASSO with 

67.2% predictive accuracy for AD status in the test set. The quantity of HSV-1 (OR=4.08, 

Padj=3.58×10−4) and HPV-71 (OR=3.90, Padj=0.02) (Table 1) were significantly associated 

with AD status using logistic regression models after correcting for the ten viruses detected 

in all four strata of the data. HSV-1 DNA was detected in 94.9% of samples in this stratum, 

and HPV-71 DNA in 12.8%.

3.3 AD Associations in WES Brain

HSV-1, HHV-6B, HHV-6A, MC, and cumulative mapped viral reads had permutation 

feature importance scores above zero in WES brain samples (Figure 2a). The best model 

was GBM showing 80.0% accuracy predicting AD status in the test set. Although no viral 

species was significantly associated with AD after multiple test correction using logistic 

regression, the association with the Herpes family cluster was significant in after multiple 

test correction for five clusters (OR=4.16, Padj=0.048) (Table 2). HSV-1 DNA was present in 

93.2% of samples in this stratum, while HPV-71 was present in 9.8%.

3.4 AD Associations in WGS Blood

HSV-1, Human alphaherpesvirus 2 (HSV-2), HHV-6A, HHV-6B, HCV, MC, Torque teno 

midi virus 10 (TTMV-10), EBV, human betaherpesvirus 5 (CMV), HPV-71, Torque teno 

virus 3 (TTV-3), Torque teno midi virus 5 (TTMV-5), TTMV-9, and cumulative mapped 

viral reads were top predictors of AD. (Figure 2d). GBM was the best predictor of AD 

status with 69.1% accuracy in the test set. No viral read counts were significantly associated 

with AD risk in this stratum in logistic regression models, but the quantity of reads within 

the Herpes family cluster was significantly associated with AD (OR=2.30, Padj=0.044) after 

Bonferroni correction for five tests (Table 2). HSV-1 DNA was detected in 56.4% of samples 

in this stratum, and HPV-71 DNA in 0.3%.

Tejeda et al. Page 6

Alzheimers Dement. Author manuscript; available in PMC 2025 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5 AD Associations in WGS Brain

HSV-1, HHV-6B, HHV-6A, MC, and cumulative mapped viral reads had permutation 

feature importance scores above zero in WGS in brain (Figure 2b). GBM was again the 

best performing model in this stratum with 77.9% predictive accuracy for AD status in the 

test set. No viral read counts were significantly associated with AD risk in the WGS brain 

dataset using logistic regression. HSV-1 DNA was detected in 59.9% of samples in this 

stratum, and HPV-71 DNA in 1.0%.

3.6 Differences in Viral DNA Prevalence by Ancestry

The prevalence and/or quantity of several viruses, and their association with AD differed 

across ancestry groups according to ANCOVA tests; p-values are based on an F-statistic 

of a one-way ANCOVA of ancestry group and viral counts adjusting for covariates (Table 

3). The cumulative viral load was highest in the CH group and lowest in EAs (P=9.96 

×10−17), driven primarily by HSV-1 (P=9.17×10−88, Table 3). AAs had disproportionately 

higher levels of HPV-71 (P=0.05), TTV-3 (P=0.01), and TTV-10 (P=4.02×10−8) and EAs 

had disproportionately lower levels of HCV (P=0.01) and TTMV-9 (P=0.01) compared to 

other groups. The association of AD with HSV-1 was evident in both AAs (OR=9.30, 

P=5.81×10−3) and EAs (OR=4.95, P=2.27×10−3), whereas AAs primarily accounted for the 

associations with HPV-71 (OR=7.24, P=2.13×10−4) and TTV-10 (OR=534, P=0.01) (Table 

4). Permutation feature importance scores above zero within ancestry are shown in figures 

S2, S3, and S4.

The group of Herpes viruses was also associated with AD in EAs in the WGS dataset 

(OR=2.82, Padj=0.017) (Table 2). In contrast, the Torque teno virus family was associated 

with AD among AAs in the subset of WES data (OR=1.67, Padj=0.04) (Table 2). Further 

scrutiny of these results revealed that the association with the Herpesviridae cluster in both 

WES and WGS data was accounted for primarily by HSV-1. HHV-6B was the second most 

common herpes virus identified in WES and WGS data. We also note that HHV-6B and 

HHV-7 were two and ten times, respectively, more frequent in WGS compared to WES 

samples derived from blood. In contrast, in sequence data derived from brain, there was a 

higher percentage of AD cases with HHV-6B in WES compared to WGS. HSV-2 was five 

times more prevalent in WES than WGS brain samples.

4. DISCUSSION

4.1 AD Risk is Differentially Associated with Multiple Viruses in Brain and Blood

We applied a novel approach to detect viral DNA in human WES and WGS data that 

entailed identifying DNA sequences that did not align to the human reference genome and 

mapped them to viral reference genomes. Higher quantity of HSV-1 was associated with 

increased AD risk in AAs and EAs but not CHs. Although the mean level of HSV-1 

in CH AD cases was similar to other ancestry groups, CH controls had 1.5 and 2.1 

times more HSV-1 than in AA and EA controls, respectively. The overall prevalence of 

HSV-1 was consistent with a study of 3,533 pregnant women in London showing that the 

observation that the HSV-1 seroprevalence was nearly 100% in black women born in Africa 

or the Caribbean and 60–80% in White, Asian and black women born in the UK [25]. 
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We also found significant AA-specific associations with HPV-71 and TTV-10. Analysis of 

phylogenetically related viruses showed that increased AD risk was associated with the 

group of herpes viruses detected in brain from subjects in the WES brain dataset but in blood 

from subjects in the WGS dataset, as well in the aggregate WES and WGS data obtained 

from EAs. The cluster of Torque teno viruses was also significantly associated with AD in 

WES data from AAs.

Our approach to identify and quantify viral load in DNA sequence data was similar to that 

employed by Readhead et al. [3] who quantified viruses in RNA sequence data derived from 

brain tissue obtained from AD cases and controls in three cohorts, including ROS-MAP, 

which is one of the sources of samples for our study. The viruses most strongly implicated 

in AD in their study were herpes viruses HHV-6A and HHV-7, which were significant in 

ML analyses but not logistic regression. While Readhead et al [3] split the viral reference 

genomes into 31 base pair segments and removed any cross-species duplicate 31-mers from 

the viral reference genomes prior to mapping the human RNA reads to them, we mapped the 

DNA sequence reads to the complete viral genomes without removing duplicate 31-mers. 

It is possible that differences in mapping methods led to differential assignment of herpes 

reads across herpes species. Despite this difference, both studies identified herpes viruses as 

the most abundant family and observed association with AD, adding to the body of literature 

suggesting they increase AD risk [4]–[11].

This is the first study to suggest a role in AD for TTV) in AD. TTV and its sub-variants 

including Torque Teno Mini and Midi viruses which infect humans at a high rate [26], but 

are not known to cause disease. A recent study showed that TTV load in plasma increased 

with age, decreased in the presence of CMV infection, and was associated with HLA type 

B27 but not AD [27]. The discordance with our finding showing an association between 

TTV and AD may be explained by differential effect of TTV on AD risk in blood versus 

brain, where two TTV strains have been detected [28]. One possible mechanism that might 

explain our observed association with TTV is that EBV, which has been associated with AD 

risk, may stimulate TTV replication [29].

4.2 AD/virus Associations Vary Across Populations

This was the first study to examine AD-related differences in viral load by ancestry. Total 

viral load was highest in the CH group primarily driven by HSV-1. This finding is consistent 

with a CDC report showing that Hispanics had higher HSV-1 prevalence (71.7%) compared 

to non-Hispanic white persons (36.9%) [30]. In contrast, all other common viruses we 

detected had the highest prevalence in AAs, including genital HPV, a finding consistent 

with other studies [31],[32]. These ancestry differences observed could be due to health 

disparities, genetics, geographic differences, or an artifact of the smaller sample sizes 

available for non-Europeans.

4.3 Latent vs. Active HSV-1 Infections

HSV-1 is typically transmitted during childhood and is present in approximately 65% of 

the U.S. population [33]. It generally persists as a latent infection with a viral reservoir 

present in sensory and autonomic neurons and can periodically reactivate to produce active 
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infections. During latent infection, sections of DNA called latency associated transcript 

(LAT) are transcribed, but not thought to be translated or leave the nucleus of the infected 

neuron [34],[35]. We mapped the HSV-1 viral reads to specific genes in the viral genome 

and found four samples in which sequence fragments mapped to the LAT region. This 

number is not likely sufficient to make meaningful inferences about latent vs. active 

infections. The prevalence of HSV-1 DNA in these samples is consistent with detecting both 

latent and active infections, but not active infections alone. Although the presence of HSV-1 

is not surprising in brain derived samples where the viral reservoirs reside, the presence of 

HSV-1, as well as HPV-71 DNA in blood derived samples is a potentially surprising finding. 

Although some evidence suggests herpes virus is shed at low levels even during latency, this 

is not well established [36],[37]. Several viruses, including EBV, HSV-1, HPV, and TTV 

have been detected in blood samples[38], [39]. HSV-1 DNA is not known to insert into the 

host genome [40], so it is unlikely that this explains its presence in non-neuronal tissue. 

Although it is not possible to definitively determine why HSV-1 and HPV-71 was detected 

in blood, the fact that its prevalence closely matches that in the epidemiological literature, as 

well as the fact that the quantity of DNA from these viruses is quite low, are evidence that 

the identification of DNA from these species is not an artifact.

4.4 Study Strengths and Limitations

Our study has several strengths. The sample size is much larger than previous studies 

that used next generation sequence data to detect microbial DNA/RNA, providing greater 

statistical power to detect associations with viruses. Additionally, the fact that 74% of cases 

were autopsy-confirmed is a strength of this study. Also, we adjusted for several potential 

confounders and technical artifacts in our models including APOE-ε4 status, sequencing 

center, sex, age, tissue source, ancestry, and use of PCR amplification. Substantial effort was 

also made to remove species not known to infect humans or were unlikely to be observed 

in elderly residents of the United States (i.e. Ebola). For example, our pipeline initially 

detected a large quantity of DNA from Macacine alphaherpesvirus, which is rarely found in 

humans and highly lethal. Subsequently, we determined that this species shares a high level 

of genetic homology to a sub-species of HSV-1 that was not initially included among the 

reference viral genomes tested.

Several limitations to this work should also be noted. The relatively small number of brain 

samples may explain why the parametric models detected significant associations only 

in blood samples. However, the nonparametric ML models identified several viruses as 

predictors of AD in brain. Second, most of the detected viruses had relatively low read 

counts, with the exception of HSV-1. As a result, several viral species identified using ML 

models did not yield robust regression results, as evidenced by very large ORs and standard 

error estimates. Another caveat is the fact that DNA reflects a “snapshot” of an individual’s 

microbial load at the time the sample was collected. Hence, we are unable to establish 

temporality for the association with AD. Unlike other viruses that cause acute infection, 

however, HSV-1 is persistent and generally life-long. Also, despite our efforts to harmonize 

our analyses, we utilized data that were generated using fundamentally different sequencing 

methods and tissue sources. Although it is difficult to account for all potential sources of 
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contamination, the significant viruses were associated across several sequencing centers, 

indicating that contamination at individual labs was not a likely source of bias.

Although ML-based associations with several viral species were observed across all four 

strata of the data, many findings were inconsistent across tissue source and type of 

sequence data. Differences between data derived from blood and brain may be explained 

by differential cell type infection among viruses and the variable ability of species to cross 

the blood brain barrier. These factors may explain why substantially more species were 

detected in DNA derived from blood. Associations between AD and HSV-1 which were 

observed only in blood derived WES samples could indicate that only more severe or active 

infections are detectable in blood. The significant association of the quantity of reads from 

the herpes virus family with AD in brain samples may be evidence that WES samples may 

be less able to discriminate between different members of species within that family. The 

detection of HPV-71 in blood only was not surprising because this virus does not infect 

neurons and instead infect basal epithelial cells [41]. The capture kits used in WES may 

explain the higher viral load detected in the WGS data because only species containing a 

sequence complementary to one of the capture probes would be detected. Unfortunately, no 

duplicate samples were sequenced in DNA derived from both brain and blood, nor from both 

WGS and WES, making direct comparisons impossible.

4.6 Conclusions

Findings from this study provide further support for a role of viral infections, especially 

HSV-1, in the development of AD and demonstrate that they can be detected and quantified 

in human DNA sequence data. Additional studies are needed to determine the role of host 

genetic modifiers within and across populations on the association of AD with HSV-1 and 

other viruses, as well as examine the relationship of specific viruses to AD-related pathology 

and biomarkers. Finally, these findings suggest that reducing the load and/or activity of 

HSV-1 may lower future risk of AD.
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Abbreviations

AA African American

Aβ beta-amyloid

AD Alzheimer disease

ADSP Alzheimer’s Disease Sequencing Project

CH Caribbean Hispanic

EA European ancestry

EBV Epstein–barr virus

CMV Cytomegalovirus

GLM general linear model

HCV hepatitis C virus

HHV human herpes virus

HPV human papillomavirus

HSV herpes simplex virus

LAT latency associated transcript

MC Molluscum contagiosum

ML machine learning

OR odds ratio

QC quality control

TTMV Torque teno midi virus

TTV torque teno virus

WES whole exome sequencing

WGS whole genome sequencing
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RESEARCH IN CONTEXT

1. Systematic review: We searched PubMed sources for relevant articles. Prior 

studies have reported that herpes simplex virus type 1 (HSV-1) might 

contribute to Alzheimer’s disease (AD) pathogenesis. In recent years, there 

have been reports indicating that antiviral treatment might protect against 

dementia in herpes infected individuals.

2. Interpretation: Our findings, together with previous work, suggest that viral 

infection, especially HSV-1, is associated with AD risk, and demonstrate 

the value of deep sequencing technology for detecting microbial agents in 

multiple tissues and detecting associations between infectious agents and AD.

3. Future directions: We aim to determine the role of host genetic modifiers 

within and across populations on the association between AD and HSV-1 and 

other viruses, as well as examine the relationship between viruses and more 

specific AD pathology and biomarkers.
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Figure 1. Frequency of viral reads by tissue source and type of sequencing.
Proportion of total viral reads mapping to individual species in (a) whole exome sequence 

(WES) data from blood, (b) whole genome (WGS) sequence data from blood, (c) WES data 

from brain in WES, (d) WGS data from brain. The innermost circle shows the proportion 

of all viral reads between Alzheimer disease (AD) cases and controls within each of these 

subsets. The middle ring shows the proportion of viral reads mapping to a viral family 

within AD cases and controls and the outer ring is the breakdown between viral species 

within a viral family.
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Figure 2. Top virus predictors of Alzheimer disease (AD) by tissue source and type of sequencing.
Bar charts of the ML weighted algorithm for (a) whole exome sequence (WES) data from 

brain, (b) whole genome (WGS) sequence data from brain, (c) WES data from blood in 

WES, (d) WGS data from blood. Each feature within each subset is assigned a score created 

by summing the accuracy of the ML prediction model in which it improved the prediction of 

AD. The top 15 features are shown in each bar chart though several other viruses improved 

the prediction models.
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Table 1.

Significant associations of viral read counts and AD risk

Virus Tissue Dataset 1 Odds Ratio p-value Adjusted p-value Effect Direction 2

HSV-1 3

Meta-analysis Meta-analysis 3.69 6.71x10−5 6.71x10−4 --++

Blood
WES 4.08 3.58x10−5 3.58x10−4 +

WGS 0.49 0.64 1 -

Brain
WES 4.83 0.44 1 +

WGS 1.80x10−5 0.26 1 -

HPV-71 3

Meta-analysis Meta-analysis 3.55 3.41x10−3 0.03 --+-

Blood
WES 3.9 1.97x10−3 0.02 +

WGS 3.09x10−100 0.93 1 -

Brain
WES 0.16 0.47 1 -

WGS 1.83x10126 0.98 1 +

*
Results from blood and brain anaylzed by dataset (WES/WGS) and combined by meta-analysis

†
+ indicates virus associated with increased AD risk, - indicates lower risk. The order of datasets is WES-blood, WES-brain, WGS-blood, 

WGS-brain

‡
p-values adjusted for 10 tests.
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Table 2.

Association of viral phylogenetic clusters with AD by ancestry and DNA source

Subset
Herpes Cluster* Torque Teno Cluster† Retrovirus Cluster ‡

Odds Ratio p-value§ Odds Ratio p-value§ Odds Ratio p-value§

WES

Total 1.10 0.42 1.40 0.01 0.30 0.09

Ancestry

African American 0.82 0.29 1.67 8.73x10−3 0.50 0.52

Caribbean Hispanic 1.89 0.11 0.90 0.78 4.02x10−7 0.98

European Ancestry 1.22 0.27 1.20 0.45 0.30 0.33

Body Tissue Source
Blood 1.02 0.85 1.39 0.02 0.36 0.18

Brain 4.16 9.54x10−3 2.53x107 0.99 0.04 0.04

WGS

Total 1.80 0.04 1.29 0.04 0.57 0.45

Ancestry

African American 0.71 0.58 1.46 0.03 0.73 0.72

Caribbean Hispanic 1.48 0.06 0.95 0.83 _NA NA_

European Ancestry 2.82 3.4x10−3 1.58 0.10 2.53 0.59

Body Tissue Source
Blood 2.30 8.79x10−3 1.29 0.03 0.61 0.50

Brain 1.89x10−5 0.99 4.21x106 0.99 _NA _NA

*
Includes HSV-1, HSV-2, HSV-3, EBV, CMV, HHV-6A, HHV-6B, HHV-7 and HHV-8

†
Includes TTV-1, TTV-2, TTV-3, TTV-5, TTV-6, TTV-7, TTV-8, TTV-9, TTV-10, TTV-11, TTV 12,TTV-14, TTV-25, TTV-27, and TTV-ALA22

‡
Includes HIV, Human endogenous retrovirus K, Primate T-lymphotropic virus 1, and Primate T-lymphotropic virus 2

§
P < 0.01 significant level after Bonferroni correction of 5 tests

NA = viral family not detected
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Table 3.

Average viral load and standard deviation for top viruses by ancestry group

Species
African 

American 
(n=5078)

African 
American 

SD

Caribbean 
Hispanic 
(n=3132)

Caribbean 
Hispanic SD

European 
Ancestry 
(n=8074)

European 
Ancestry 

SD
p-value*†

Epstein–barr virus (EBV) 2.76x10−3 0.07 0.01 0.11 2.85x10−3 0.07 0.08

Human betaherpesvirus 
6A (HHV-6A) 0.33 8.96 0.25 10.67 0.23 5.49 0.53

Human betaherpesvirus 
6B (HHV-6B) 0.33 8.64 1.26 33.75 0.65 14.71 0.13

Human betaherpesvirus 7 
(HHV-7) 0.01 0.17 0.02 0.22 0.01 0.11 6.59x10−4

Human papillomavirus 71 
(HPV-71) 0.4 1.44 0.03 0.22 0.06 0.28 0.05

Human alphaherpesvirus 
1 (HSV-1) 7.23 8.11 9.89 10.81 5.69 9.49 9.17x10−88

Hepatitis C (HCV) 0.09 0.43 0.09 0.43 0.04 0.3 0.01

Molluscum contagiosum 
virus (MC) 0.08 0.47 0.01 0.13 0.02 0.14 0.18

Torque teno midi virus 9 
(TTMV-9) 0.03 0.25 0.03 0.27 0.01 0.16 0.01

Torque teno virus 10 
(TTV-10) 0.02 0.32 0.01 0.15 2.97x10−3 0.08 4.02x10−8

Tick-borne encephalitis 
virus (TBE) 0.01 0.16 0.01 0.12 2.72x10−3 0.07 0.07

Cumulative Viral Load 8.76 15.87 11.79 37.74 6.79 18.58 9.96x10−17

*
p-value is based on an F-statistic of a one-way ANCOVA of ancestry group

†
Adjusted for sequencing center, APOE genotype, and body tissue source
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